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While numerous articles have appeared in the literature which describe
the one-parameter logistic model .and its application in a tailored testing

setting, little or no research has been conducted on the operational
characteristiu, of the procedure when p-ogram parameters and item pool

attribut.es are varied. The primary objective of this investigation was

- to determine the effects of varying the program parameters, stepsize and

acceptance range, as well as the item pool attribut:s, size and shape, on
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obtained from tailored tests. Specifically, two main research questions

were addressed. First, what values of stepsize and acceptance range
provided the least bias and smallut standard error of ability estimates?

The stepsize program parameter coftrolled the magnitude of movement through

th c. item pool during the initial item selection phase of tailored testing.

7,e acceptance range program parameter specified how deviant the selected

item's lifficulty value could be from the requested item difficulty and

still 1:4r-chosen for administration. Secondly, what shape and size of
item difficulty distribution provided the least bias and standard error
of ability estimates across the range of the latent trait? Two FORTRAN pro-

grams were used for investigating the effects of program parameters and item

pool attributes. Both programs took as input the stepsize, acceptance
range, item difficulty values for the various sizes and shapes of item
pools, and the true abilities for which estimates were to be made. The

first program, TREE1P, produced the propensity distribution, the probability

distribution for observed ability estimates given.a true ability, 0, and

vovided output of the E(o) and AAR(o). The other program, SIM1P, was
developed to overcome the limitation on the size of item pool which could

be investigated at a reasonable cost using the TREE1P program. The SIM1P

program provided output of the 3-((o) and .D.(0) of ability estimates of ,

a specified number of simulated tailored tests assuming a given o. The

results of the study were drawn from tables which summarized the oqtput
-of the TREE1P and SNIP programs. In addition to the recommendations
regarding the research questions stated above, an effort was made to discuss

the interaction of the variables of stepsize, acceptance range, item pool

size and the shape of tho distribution of item pool difficulties. Results

suggested that each of these variables played a substantial role in affect-

ing the magnitude of statistical bias and standard error at various points

alonathe ability continuum. The results were presented as a guide for

those involved in setting up a tailored testing procedure. The intent

was to provide figures and tables to facilitate applications of tailored

testing procedures such that a minimum of bias and standard error of ability

estimates could be attained.
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1 .PERATIONAL CHAR'ACTERIST4 OF A ONE-PARAMETER

JAILOnED fESTINOPOCEDURE

i

.

i

Tailored to-cring, tile selection and scOring of test items adminis-tred in aninteractive fashion to individual examinees, has within thepast .Jecade rJecome tie spearhead for applicapon of latent trait modelsto achieve;nent and ability measurement. The;availability of improvedcomputer technology has contributed greatly to the increase in the numberof systems presently in operation which adminster tailored or adaptivetests. It should be noted that tailored test'ng as presented here is
synonomous .,ith ra4icy other assigned names suc i as adaptive testing,
response contingent testing, or sequential te ting. Of the many proce-dures available for tailored testing,.one of ipose used at the Universityof Missburi is based on the one-parameter logistic model.

.;.;ile numerous articles have appeared in the literature which describethe one-parameter logistiCmodel and its applickion in a tailored test-ing settiny (see, for example, Reckase, 1974; 4iss, 1974; Patience, 1977),little or no literature has been written discusiing operational character-istics of tne tailored testing procedure when pogram parameters and itempool attributes are varied. For thjs report, Oerational characteristicsrefer to how well the tailored testing procedure\estimates a given trueability. Program parameters refer to those program options (such as theitem selection rule) that must be selected before the program can operate.Item pool attributes refer to the size, distribution, and quality of theitem pool. The operational characteristics, iterri pool attributes, andprogram parametert, will be described in detail shortly.

Altns-u0 literature was found which addressed the effects of vary-iny pragraL ,.,arameters, a few studies have appear4ed in the,literatureNnich investgated effects of item pool attributes on tne operation
of tailored rezting. Jenseria (1975), for example, has investigated theinfluence at pool ,,ize and item characteristics on a Bayesian tailoredtesting ;Irocedure. In general, Jensema found that wnen items are- of ade-gdate qualit, it i not necessary to have very large item pools. Reckase(1076) concurr.-d with Jensema in reconmending a rectangular distribution:t iteL pool difficulty values. In this latter study, the tailored testing
oraceslure wa,; k3,.(1 on an empirical maxillum likelihood estimation of theability parameter of the simple logistic (Rasch) model. Issues worthyof further inve.,tigation have surfaced in addition to item pool attributes,

J. He otf.,ct', of prograr parameters on the bias and variance of
1:,111t, H at 1 on

articlos nave appeared in the literature which use the phrase' la, -I tailored t--,fing ability estimation" to mean -cedural bias
t-Ividrd suLgrouw, of an examinee population such as min, tties (see, for
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(?xample, Pine and Weiss, l978).:. The research reported here did not add-.
ress this type of bias. Rather, ability estimate bias, as investigated
by this paper, was concerned.with whether the expected values of the maxi-
mum likelihood abitIty estimatet were equal to the known true ability.
In this sense, the attempt was'to identify values for the program para-
meters and the item.pool characteristics which would provide the least
statistical .uias in ability estimation. The variance of ability estimates
was toe squared standard error of the ability estimates for a known true
abi;ity. The desire was to minimize this standard error. These two
dependent measures provided the criteria for judging how well the tailored
testing procedure estiate.i known abilities when the program parameters
and iteL; pool characteristics were varjed.

Purpose

The primary purpose of the research described herein was to deter-
mine the operational characteristics of a one-parameter tailored testing
procedure when program parameters and item pool attributes weYe varied.
The program parameters investigated were the stepsize and acceptance
range. The stepsize parameter specified the magnitude of movement of the
ability estimate during the initial item selection phase of tailored
testing. 'After the initial pnase, maximum likelihood ability estimationwas used. Tne acceptance range parameter determined how deviant the
selected item's difficulty value could be from the requested item diffi-
culty and sti3l be acceptable for administration. In the tailored test,
items were requested by the procedure to match the ability estimate computed
based on previous item responses. The item pool attributes varied were
siz, shape, and quality. Each of these variables will now be described
',iore specifically.

T.461 prerise of.tailored testing is that when an examinee answers
. ;t-r correWy, the next item administered should be more difficult,

dIt'r ar examinee answers :in item incorrectly, the next item should
le-)s difficu7t. The stepsize program parameter initially controlled

no'A f,ucn rore difficult or easy was the next item administered. The
selection of items was controlled by the fixed stepsize until the examinee
nd(i answered itens both correctly and incorrectly. After both a correct
and incorrect response had been obtained in the response string, a maxi-
mum likelihood ability estimate was obtained usihg an iterative search for
the mode of the likelihood distribution. For a more complete description
of the item selection and ability estimation components of this maximum
lIkelihood tailored testing proceduie see Patience (1977). In the past,
arbitrary values have generally been chosen for the stepsize. One of
t!le prilaary goals of this research was to empirically investigate the
e'fects of stepize value') on the bias and standard error of ability esti-
1,ates. In rw doing, the intent tn determine the optimal stepsize
ilue whicn would miniHize the biw, and standard error of ability estimates.

7he wcomi program param,?ter investigated was the acceptance range.
he acceptanc(' range specified the amount of deviation in difficulty an

inistered item could have trom the requested item difficulty and still
ILcoptahle tor administration. The acceptance ranye parameter monitored
ai;aropriateness of selected throughout the tailored-test, i.e.,
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both during item selection based on the fixed stepsize until both correctand incorrect responses had been obtained, and also during item selec-
tion to maximize the information function for a maximum likelihood ability
estimate. If more than one item were within plus or minus the acceptance
range of the desired item, the item with a difficulty value nearest the
requested value was chosen. ,If no item were available from the pool withinthe specified acc:ptance range of the difficulty requested, the tailoredtest was terminated. The primary aim regarding the acceptance range, tnen,was to determine what value or range of values yielded the least biasand standard error of ability estimates. Clearly, a small value for the
acceptance range would have insured that items very near the desired item
difficulty would he administered. On the other hand, too small an accep-
tance range value would have increased the chance of premature termination
of the tailored test, which would have induced bias of the ability esti-mate. It should be noted that both stepsize and acceptance range interactwith item pool attributes and, therefore, a choice of what values areoptimal may not be made assuming independence of these controlling factors.

The item pool attributes studied in this research included size, shape,and quality. Simulated item pools used in this investigation ranged insize from nine to 181 items. Shapes of item pool distributions were normal,
rectangular, bit...odal, and skewed. Item pool quality referred to the con-
trast between actual and idealized pools. Idealized pools consisted ofitem difficulty parameters equally spaced from -3 to +3. ..'

Actual pools consisted of item difficulty values (minus one times
each of the item easiness values) obtained from calibration runs using
the .14right and Panchapakesan (1969) calibration program based on the Raschhiodel. In these pools, items were not equally spaced on the difficulty
scale. One of the actual item pools contained 72 items while the otherhad 180 items. The 72 item pool consisted of item difficulty parameterestimates from the calibration of three vocabulary tests. This pool waslabeled VC1PL. The other pool was constructed using item difficulty para-
fleter estil'ates from the calibrations of tests covering the evaluation
teciniques portion of an introductory measurement and evaluation course.This pool wa-:, labeled ET1PL. The distributions of item difficulty forVC1PL and ET1PL were graphed and appear in Appendix A. It should be notedtqat .dool attributes played a substantial role in the utility oftoe tailorei -esting procedure.

Prograws

HYrITAN programs were used for investigating effects of program
arai;uter, nd itm pool attribu tes. The input variables for both pro-q).1L, in(1ludek4.: a) acceptance range, b) stepsize, c) item pool size,

J) item difficulty values for the various sizes and shapes of item pools,An:; e) the truc abilities for a set of hypothetical examinees. Both pro-
output the mean am! standard deviation of the estimates of each

f.rue Ibility orovided. These served as dependent measures for determina-
'.ion of f.,e quality of estimation for the specific values of the acceptance

,ize, and item pool v.arar,eter set.



Tne first program, the TREL1P, was based on the concept of a propensity-
distriuution.l' A propensity distribution in this context was defined as
the probabflity distribution for observed ability estimates, given a true
auility, P(o19) (-Lord and Novick, 1968). The concept of a propensity
distribution was extended from its use in true score theory to the context
of latent trait ability estimation. The TREE1P program determined the
propensity di;tribution for a given true ability, u, analytically from the
properties of the tailored testing model.

6riefl:1,.tne TREL1P program operated as follows. Initially an item
of average difficulty was administered to the simulated examinee with
known true ability. Based on the probability function for the simple
looistic Hodel,

PL:1 e
w(u - b)

FT-- IT)
1 + e

(1)

where is the item score (0 or 1), b is the -item difficulty parameter,
and is the ability parameter, the probability of a correct and the pro-
bability of an incorrect response were obtained. If the response were
correct, tne &linty estimate was increased by the stepsize. If the response
were incorrect, the ability estimate was decreased by the stepsize. Thus
after one itel' was administered, two paths or branches were present on
the "tree". (The tree diagram from probability theory was employed to
represent the propenstty distribution in this study.) Based on these
first possible ability estimates, the closest items to each of the two
estimates was selected for administration with the constraint that the
difficulty of tne iter:is must have been within plus or minus the acceptance
range from the present ability estimates. If no items were available,
that branch was terminated at that point. However, assuming items were
available, tnere existed four possible paths after the second item had
been administered. 4--1ong as all correct or all incorrect responses
ere obtained on a given patn, tne ability estimates continued to be increased

decreased, respectively, by the stepsize. However, when both a correct
and 3n incorrect response were present on a particular path of the tree,
a maximum-likelihood ability estimation procedure obtained an ability esti-
16ate using an iterative search for the mode of the likelihood distribution.

To partially illustrate how the propensity distribution was determined
tho TREL1P, Figure 1 shows a diagram representirg the operation of the

rocedure on a nine item rectangular pool. The stepsize used for this
illustration was 1.0 and the acceptance range was 0.3. The 9 for this
analyticll derivation of tne propensity distribution was set at zero.
As ,,,as pointed out above, the procedure began by administering an item
(.0 average difficulty frop; the pool, i.e., the item with the difficulty
pAral-eter 0.0. The probability of a correct response, as determined by'it rrobability function given above for the simple logistic model, was
0.5 an,i the probability of n incorrect response was 0.5.

Atter a cnrroct re,,pon',0 the ability estimate was increased by the
, vr aft,,r an Inc(wrect reYponse, it was decreased by the step-

Ittr.one 1 ter., the ibility estii-ate was either :.0 with



-5..

Figure 1

Procedural Operation of TREE1P
on a Nine Item Pool with

Stepsize = 1.0 and Acceptance Range = 0.3

1 t Probabilitv , I stimate Probability Lstimate
Parameter., of Reponw (Item Selected) of Response (Item Selected)

3.00

2.25

1.50

0.75

-2.75

.-1.50

-2.25

-3.00

1.00
0.50 (0.75)

2;00
(2.25)

0.375

* )

-0.375

* )

-2.00
(-2.25)

0.0 0.0

1.0 1.174

Note. The. * indicates that no item was available in the pool within +
the acceptance range.

probavilit), of 0.5 or -1.0 with a probability of 0.5. This procedure was
followed so tiat finite ability estimates would be available after each
item response, rather than the 4. value given by the maximum-likelihood
procedure. The expected value of the distribution after one item was
0.0 and tlw .-Aandard deviation was 1.0.

'-.15ed on these first possible ability estimates the closest items
were selected from the pool with the restriction that their difficulties
mIcA have been within plus or minus 0.3 of the requested difficulties.
Thus, as Figure 1 illustrates, items with parameter estimates of plus
and minus 0.75 were administered to the estimated abilities plus and minus
1.00 respectively. On the upper branch of the tree, a correct response
,ielded an ability estimate that was again increased by the stepsize,
-,ince a maximum-likelihood estimate could not be determined without both
a correct and incorrect response. Now, the ability estimate was 2.0.
The probability of this correct response to the item with the 0.75 diffi-

lty parameter was 0.32. The bottom branch of the tree was the same
.cf,pt tor ch,Inge in siqn of the iteliparameters and ability



estimates. .When the item pool distribution being considered was symmetric,
tne results of the analyses were the same above the zero point as below
the zero point except for the change in sign.

Following the middle branches of the tree, an incorrect response to
the item with diffi ulty 0.75 yielded an ability estimate of 0.375 from
the Maximuld-likelihm tvchnique. The probability of this response was
0.68 based on the model. When the first item was missed and the second
answered correctly, the probability of the second response was also 0.68.
By the local independence assumption of the model, the probability of
either a + 2.0 estimate was 0.5 X 0.32 = 0.16 while the probability of
+ 0.375 was 0.5 X 0.68 - 0.34. In this manner the propensity distribution
could be obtained tifter two items had been administered. As noted at
the bottom of Figure 1, the expected value was still 0.0 and the standard
deviation (which was determined as the square root of the VAR(e)) was
1.174.

Tne tree developed further in this same manner whenever items within
the acceptance range were available. If all correct or incorrect responses
were present, the fixed stepsize was used to make ability estimates.
Once a mixture of correct and incorrect responses was present, the maxi-
mum-likelihood ability estimate procedure was used. Mote the "branches"
of Figure I were "live" at + 2.00 ability estimate but no items existed
in the pool within + 0.3 of the ability estimate + 0.375. Therefore,
those branches terminated.

The tree continues to develop by following all "live" paths. The
program is.finished after all branches are terminated by the condition
that in items of appropriate difficulty are available in the pool. One
may well imagine that as the number of items in the pool gets larger,
the procedure is, practically speaking, bounded by the storage capacity
of the corputer facility and magnitude of one's computer budget. For
the HM 370/163 syster on which the TREE1P program was run, it was foiOnd,
that sixty-one items was the practical upper limit on the number of iftems
the pool could contain for any particular run of the various combinaiions
of stepsize, acceptance range, and shape of the item difficulty distri-
bution.

due to the limitation on size of the item pool which could be investi-
yated .itn the TREE1P program, the second computer program, SIM1P, was
developed. This program was adapteti from the tailored testing procedure
baed on the Rach model which was already operational. This particular
tailored testing procedure has been described thoroughly elsewhere (Reckase,
1374), so only the detail, pertinent to this research have been presented.
Tne S111P pro:Jr-am followed only one path for any given o in contrast to
the TqL1P. A particular path was selected using Monte Carlo simulation
tecnnique,s. It provided for investigation of the properties of bias and
v-iriance of dbil ity estimdtion with much larger item pools since the required
,toraw dnd computation Were '.uhstaut ially reduced as compared to the
7LE1P w.ogr(iN.

Tne following v i ue ervod 1,, input to the program: the stepsize,
dcceptdnc" ',Inge, item pool ditticulty valuers, -, and number of simulated
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tests to pe administered by the tailored testing procedure. The proce-
.dure i.nitially administered an item of average difficulty from the pool
of items provided. It a correct response were obtained, the ability was
increased by the stepsize...If an incorrect response were obtained, the
ability war) decreased by the stepsize. The Opp ropriate 'item for the new
ability was administered. This fixed stepsize up and down procedurecon-
tinued until both a correct and incorrect answer had been obtained in the
response.tring. Then the procedure switched from the fixed stepsize
procedure to maximum-likelihood ability estimation. In both cases, items
were selected to maximize the item information (Birnbaum, 1968). Ability
estimation was accomplished after each item was administered (provided
correct and incorrect responses had previously occurred) by. the Maximum-
likelihood estimation procedure using an iterative search for the mode
of the likelihood distribution. The items administered had to be within
plus or minus the acceptance range from the requested item difficulty.
If no items were avaflable within this range of the estimated ability,
tne procedure stopped. The only other stopping rule was based on a preset
maximum number of items that was to be administered.

Items were scored correct or incorrect y the SIM1P program utiliz-
ing arinternal random num generator. First, the probability of a
correct response was computed using the formula for the probability func-
tion of the simple logistic model stated earlier. The e for this computation
4as tne true ) that was input into the program, and the difficulty para-
meter, b, was that of the item just administered to the simulated examinee.
After this probability of a correct response had been determined, the
randord number generator selected a number between zero and one from a
rectangular distribution. If this randomly selected number was less than
or equal to the probability of a correct response, the item was scored
correct. If the randomly selected number was greater than the probability
of a correct response, the item was scored as incorrect. An ability esti-
mate was then obtained and th next item to be administered was selected
to maximize information for this estimated ability. This procedure continued
until ono of tne stopping rules was encountered.

The P:ajor controlling program parameters for both the TREE1P and
were the stepsize and acceptance range values. The stepsize para-

...:eter controlled how quickly the procedure would move through the item
pool the acceptance range parameter specified how discrepant 'tens
could ue trof) those desired and still be administered. The acceptalce
range ako indirectly determined the number of items from the pool which
Nen.? availahle for administration. Clearly, the wider was the acceptance

greater was the number of items that could have been chosen
for administration.

Toe TREL1F and SIM1P programs used in this study for determining
tie 0;1-iwal stepsize, acceptance range, item pool size, and item pool
,!1,t,-;:)utin were siv;ilar in that both output the mean and standard devia-
tion of ability estiwated for each true - input. However, they differed
In tn. (inner in which the mean and standard deviation were determined.
.flile tne TREL1P pursued all possible paths through the item pool, the
1)i'.11P tollow?d only the path that was the result of the simulated inter-
iction of an examinee with the tailored testing procedure. The mean and
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standard deviation from the TREE1P were actually expected values and square

0 roots of variance computed from probabilities arising from the one-parameter
model and ability estimates arising from the maximum-likelihood estimation
tethniquo. The SIM1P prograiii provided a mean and standard deviation of
the set Of ability estimates obtained for each.of the 0$ specified.

Research Design

To investigate the optimal stepsize, acceptance range, item pool
size, and item pool shape, nearly all possible tOmbinations of the follow-

.

ing were input into the TPEE1P and SIM1P programs for true abilities -3,
-2, -1, 0, 1, 2, and 3. The stepsize values used were .3, .4, .5, .6,
.693, .8, .9, 1.0, 1.5, 2.0, and 3.0, while acceptance.-ranges were .1,
.2, .3, .4, and .5. Item pool sizes were 9,13, 25, 31, 61, 72, 180,
and 181. Item pool shapes investigated were normal, rectangular, bimodal,
and skewed, with difficulty values constrained between plus and minus
three. Idealized item pools (difficulty values in the above shapes with
spacing.dependent on shape and size of item pool) were constructed and
used as input to the programs, as-well as actual item pools (test items
Calibrated and formed into pools with no constraint on the spacing along
the difficulty scale).

Tne r:anner in which item pool size effects were investigated using
s;imulations was to run the TREE1P and SIM1P programs on the various sized
pools mentioned above. With the resulting data, plott and projections
were made to estimate the item poo) sizes needed for various accuracies
of ability estimation. The relationships between the item pool size,
bias, and the standard deviation were determined.

The comparisons to determine the optimal combination of independent
variables were based.upon the mean and standard deviation of twenty-five
sitrulated administrations of a tailored test to each 0 using the SIM1P;
wnere for the TREE1P program, the comparisons were f the expected value
of -, [( ), and the standard deviation of 0, /Var(0). Values of these
dependent variables were compared across program runs using various sized
item pools, holding stepsize and acceptance range constant. They were also
compard from runs using various shapes of item pools, holding size of
item pool, stepsize, and acceptance range fixed. Additionally, compari-
mms were rlade of the dependent variables,.first varying stepsize with
all (t.ne,. variables fixed, and then varying the value of the acceptance
range while holding all other variables constant. Since the TREE1P pro-
orar was consiriered to yield the !cost accurate viilues, i.e. E(.1) and

_

Var( ) based upon the propensity distribution, another comparison was
:eel.;e1 iHportant. Becausf?,the SIM1P means and standard deviations were
,ut;ject to sample variation, they were validated against values of the
PiciElP for variou> runs on the sixty-one itew pool. Also, the number

e'Airiates of the true ability, i.e. the mumber of tailored tests admin-
1,,terpd to cacn ;iviulated examinee by the SIM1P program, was varied. This
d) done to check whether an appropriate nuipher of administrations had



Results

The' re'.ults of this study were to a great extent drawn from tables
which .Ailmari:ed tpo re'.ult.. of the TULIP and SIM1P program-. One issueto be investiqated was the type of dictribution of item potl difficulty
pdrameters that yielded theleted bias and standard error of ability
estimates across the range of ability from -3 to +3. Another finportant
question was how large an item pool was necessary to accomplish the goal
of accurate ability estimation. Thirdly, a determination of the preferred
ILagnitude of the stepsize parameter Was desired. The fourth outcome of
this study was to decide upon the approximate value of the acceptance
range-program parameter which would provide ability estimates with the
least bias and s.tandard error. These were the primary targets of the
study.

SecondarY goals of the study included a comparison of the performance
of actual versus ideal item pools. Another secondary objective was to
compare the results of the TREE1P and SIM1P programs. In this regard,
two concerns.were investigated. One pertained to how close the SIM1P
estimates of the means and standard deviations of ability were to the
E(0) and ,"1./ar(r1 determined by the TREE1P. The importance of this par-
ticular cancern related to how well the SIM1P analyses on larger item
pools provided accurate data. on the primary questions of this study.
It should be recalled that the motivation for development of the SIM1P
program was to investipte the research questions of the study on larger
item pools than the TREE1P program would realistically accommodate. The
second concern subsumed under,comparison of the TREE1P and SIM1P programs
was to decide whether or not 25 estimates of each ability by the SIM1P
was an adequate number. Several analyses were run using the SIM1P programon varidus i/em pools from which data had already been obtained from theTREL1P. By running the SIM1P on these pools -and holding all other variablesfixed except the number of test administrations, data were obtained per-
taining to the adequacy of the SIM1P estimates of the means and standard
deviations. Another matter along this same line was investigated with
runs of the SIllP on some of the larger pools. This was the question
of whether or not 20 iteHs was an adequate upper limit on the number of
fter:, administered by the tailored test.

itei. Pool Sial)e

TRLL1P prograr (propensity'distribution technique) was used to
evaluate toe effects of varying the shape of the iter4 pool difficulty
distrioution on ability estWation. Four shapes of item pools were studied:
rectangular, norHal, bir2odal and skewed. The rectangular item pools were
eetaihed sinply by selecting equally spaced items between +3.0 and -3.0inclusive. Toe normal item pools were constructed such that the items
were equally spaced in probability. That is, the area between item posi-ions WaS kept constant in toe range from +3.0 to -3.0 standard deviationilits in tne nomal distribution. This procedure for producing the normally
di,triouted pools had the effect of selecting more items around the diffi-
..oltj value of zero and fewer items at the extrenes. A sildilar orocedure

4 '01! ih ,elcctiryj t;le itevi parameters for the bimodal pool,, as was
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used for selecting the normal pools. The negative half of the pool was
centered around -.693 and the area under the normal distribution was used
to place items around this point up to zero and down to -3.0. The same .

was true for the positive half of'the pool. The reason +.693 were chosen
as the two wodes of the bimodal distribution was that, prior to the con-
struction of a bimodal pool, .693 had appeared promising as a stepsize
value. Therefore, after the first item was administered at 0, the step-
size of .693 would move the ability estimate out to one of the more dense
region; of the pool depending upon whether the examinee correctly or incor-
rectly ansered tne first item. The skewetid item pool distribution of item
parameters was constructed via a similar procedure to that for the normal
and :)imodal pools. That is, the items divided the distribution into equal
areas. For the skewed pool, tables of the Pearson Type III distribution
were used. The pool constructed was positively skewed (skewness = .5).
It sneuld sie notei that in the tables included in this report, a skewed
distribution always indicates a positive skew. However, the results would
generalize to negatively skewed pools.

-kesult concerning the shape of the item pool distribution may be
Jeer in Ta.les 1-6 for different combinations of values of the other var-
iables. .owever, Tables 1 and 2 point out the more general trends of the
item distribution study. In Table 1 the comparisons of the normal and
rectanyular pools of 25 items are shown for only acceptance ranges of 0.1
and 0.3 when paired with stepsizes of 0.5 and 0.7 respectively. These
values of acceptance range and stepsize were chosen because they appeared
to yield some of the least bias and least variance estimates. Specifically,
the acceptance range of 0.1 was chosen to check whether the more dense
iter: parameters near the middle of the normal distribution would make the
use of the :)waller acceptance range desirable.

(.1

Intjt

Table 1

Corparison of TREE1P Results from
item Rectangular and Normal Item Distributions

Aribution

Ability Level

0.0 0.5

E-(:)

1.0 2.0 3.0

L(-) L(u) S ( ) S.

-0.001 0.(W 0.410 0.9?-/ 0.944 0.943 1.893 0.968 2.764 0.884
0.(P)1 0.L.)?? 0.904 0.980 0.762 1.468 0.426 1.555 0.251

P -0.013 0.11/ 0.430 0.8?4 0.911 0.893 1.986 0.984 2.933 0.773
0.000 0.9')9 0.623 0.92? 1.169 0.821 1.877 0.491 2.093 0.231

, !),. ,111 t ()i 1,1t1, , t nt'rt 110Ut inn dppear-, to be.
ts, 1., /0(.tancl:,1,1r i ttT t.1.1'Dut 111 olmw,t all cae...). Except
tnt J,(J.pfdn(J rono, dota at ond 1.1 okility 1ev01',, either



. .!we from the true u or the standard devia-
,.,fk:. it iS interesting to note that even the estimates1.1.! !_ vod tor the normally distributed pool as forn. ,oLt4n,OJi though more items are present for estimation1;1 a:,Ilt% t 1.4 .,-1 tho normal pool.

Table 2
ir!, and Standard Deviations

!'ilf) on Various Shaped Item Pools

Ability Level

L()

1 2 3

So E(u) Sti E(0) So

) nt, 1.256 0.873 2.267 0.693 2.840 0.543
7 1.24b 0.876 2.281 0.688 2.852 0.525

rih 1.008 0.677 2.138 0.805 3.111 0.566
1.292 0.858 2.257 0.670 2.801 0.561

lc, with 61 items with the stepsize and accep-
-C.11,! o.irameters set at 0.693.and 0.30 respectively.
IHhties were presented since the results are

,,rn Except for the skewed pool.

,q:ted values and standard.deviations from the
'-', rectangular, and positively ,skewed pools.

;,.t.y-one items. The stepsize was fixed at 0.693,
held at 0.30 for all runs. Again the rec-

overall than did the other shapes of item
!.or t!'iie abilities zero and one, the standard

as well as the bias of the estimates was
,c,ing the rectangular pool. At the ability levels

pool yielded estimates with less bias
iarfjer standard deviations than the other

1-1-aL1P would have been the same for
otinuum when the pools were symmetric.

-line', of ability were run for the normal,
-,1 However, for the skewed pool containing

ility values of -1, -2, and -3 were run
were indicated in Table 2. The results

I i -1.189 and So - 0.836. For -2, the
!Ilr -3, the E) -2.935 and So 0.577.

onol as being better suited for ability
-no, since it contained more items around

H'tt(!r than the rectangular pool.

--A500f



Item Pool Siz,y

The criteria for judging how large an item pool was needed for good
ability estimation using the tailored testing procedure were again the
bias 3nd standard error of ability estimates. The results of the simu-

lations using both the TREL1P and SKIP programs ha0 been condensed,
and the general trend has been illustrated in Figure 2. The values of

the E(.) and S. which have been plotted.for item pools of size 9, 13,
25, 31, and 61 were obtained from the TREE1P. Each of these pools had

a rectangular distribution of item difficulty parameters. The means and
standard deviations of ability estimates on the SIM1P runs on VC1PL and
ET1PL (described earlier) have been included in the plots of Figure 2.
Each analysis represented in this figure had 0 set equal to 1.0, the step-
size fixed at 0.693, and acceptance range equal to 0.30.

The top graph of Figure 2 illustrates that as item pool size reaches
61 for this particular set of analyses, the E(e) is equal to 0. The bias
of the ability estimates is essentially zero. The bottom graph of Figure
2 shows that as item pool size increases, thE standard error decreases.
1.;hi1e these plots should be considered as rough approximations of the
relationship between item pool size and ability estimate bias and stan-
dard error, the indication appears q:o be that with a uniform distribution
of item difficulty, 0 = 1, and the pro0.am parameters equal to the values
used here, one could 'xpect very little bias and a standard error of about
0.3 with an item pool consisting of around 200 items. More will be presented
on item pool size in the discussion section of this report.

Stepsize

The results of the study of the preferred magnitude of the stepsize
program parameter may be seen in Tables 3, 4, 5, and 7. Tables 3, 4, and
5 give the E0) and S, from TREPP analyses of 0 = 0, 1, 2, and 3 using
iteh. pools of size 9, 13, 25, 31, and 61 for the rectangular, normal, and
bimodal distributions of item difficulty parameters, respectively. Table
7 presents the res:Ats of the SIM1P analyses on the ET1Pl. item pool for

= -3, -2, -1, 0, 1, 2, and 3. Negative f: values are not shown in Tables
3, 4, and n since the results of the TREE1P on the pools used are the
same as for the positive 0 values except for the change of sign. This
b.as eNpected snce the item pool distributions of item difficulty are
sylvEetric around zero. The acceptance range for all analyses for Tables
3, 4, and was 0.30. For the SIM1P analyses of the ET1PL, a substantially
larger item pool, a smaller acceptance rany, 0.25, was used as is noted
at the bottom of Table 7. Another variable recorded in Table 7 is the
mean nuwber of items administered for the 25 tests irrulated by the SIM1P
for each ability level. The maximum number of items per simulated test
was 20 for these SIM1P analyses.

In general, results presented in Tables 3, 4, and 5 suggest that
ste.)sizes between 0.5 and 1.0 give fairly unbiased estimates, and also
'1a\,e the s7la11est standard errors. Larger stepsizes tend to have a posi-
tive Ha) and larijer standard errors. [roil several graphs like the ones
:r.es,!ntpd In Fiure 3, tn0 stepc,ize value of 0.693 appears to be the best
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Figure 2
Relationship Between Item Pool Size

and the E(0) and S
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Table 3
Expected Values and Standard Deviations
from TREE1P on Rectangular Item Pools

Varying Pool Size, Stepsize and Ability Level

Ability Level

Pool Size Stepsize 0 1 2 3

E(e) So E(.)) So E(e) So E(o) So

0.5 -0.000 0.645 0.405 0.603 0.709 0.482 0.877 0.335
9 0.693 -0.001 1.025 0.756 1.113 1.593 1.217 2.388 1.139

1.0 -0.001 1.155 0.821 1.213 1.685 1.298 2.548 1.286
1.5 -0.001 1.182 0.934 1.268 1.966 1.439 3.016 1.423

0.5 -0.001 0.765 0.655 0.937 1.577 1.219 2.599 1.201
13 0.693 -0.001 0.976 0.733 1.056 1.587 1.217 2.454 1.168

1.0 -0.001 1.187 1.037 1.150 1.995 1.085 2.822 1.005
1.5 -0.006 1.125 0.899 1.249 1.960 1.463 3.045 1.424

0.25 -0.001 0.547 0.584 0.809 1.606 1.200 2.783 1.190
0.5 -0.001 0.736 0.857 0.842 1.933 1.000 2.964 0.809
0.6 0.001 0.744 0.896 0.888 1.986 1.004 2.955 0.788
0.693 -0.013 0.786 0.910 0.892 1.984 0.980 2.925 0.765

25 0.8 -0.013 0.801 0.931 0.934 2.047 1.042 3.045 0.845
0.9 -0.001 0.845 0.996 0.895 2.061 0.972 2.996 0.784
1.0 -0.001 0.829 0.990 0.901 2.099 1.036 3.135 0.867
1.5 -0.001 0.972 1.109 1.086 2.318 1.221 3.389 1.040
1.7 -0.001 1.473 1.329 1.417 2.477 1.116 3.143 0.614
2.0 -0.001 1.551 1 .389 1.553 2.673 1.348 3.535 0.846
3.0 -0.001 1.555 1.361 1.741 2.863 1.930 4.248 1.750

0.5 0.004 0.726 0.949 0.788 2.022 0.902 3.018 0.725
31 0.693 -0.003 0.742 0.973 0.826 2.068 0.907 2.997 0.672

1.0 -0.003 0.776 1.009 0.866 2.140 0.995 3.183 0.817
1.5 -0.005 0.925 1.116 1.050 2.002 1.388 3.382 1.023

0.5 -0.001 0.598 0.989 0.657 2.116 0.804 3.133 0.593
61 0.693 -0.001 0.610 1.008 0.677 2.138 0.805 3.111 0.566

1.0 -0.000 0.641 1.039 0.745 2.229 0.915 3.239 0.689
1.5 -0.001 0.734 1.100 0.894 3.560 0.899 3.560 0.899

:lote. Acceptance Range = 0.30

i!?

6
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Table 4
Ixpected Values and Standard Deviations

from TREE1P.on Normal Item Pools
Vdryitig Pool Size, Stepsize and Ability Level

1001 HZc Stepsize

Ability Level

1 2 3

£(,) Su E(o) Se E(e) Se E(e) Se

0.5 -0.001 1.018 0.848 0.847 1.318 0.491 1.463 0.2269 0.693 -0.001 1.098 0.960 0.966 1.601 0.655 1.898 0.382
1.0 -0.001 1.269- 0.880 1.084 1.641 0.63? 1.877 0.334
1.5 0.000 1.500 0.693 1.330 1.142 0.972 1.358 0.638

0.5 -0.001 1.028 1.062 0.866 1.697 0.514 1.922 0.237
13 0.693 -0.001 1.101 1.002 0.942 1.648 0.628 1.932 0.358

1.0 -0.000 1.273 1.146 1.020 1.760 0.548 1.946 0.231
1.5 -0.001 1.439 1.272 1.282 2.219 1.188 3.031 1.258

0.25 -0.001 0.847 1.110 0.858 1.969 0.576 2.210 0.408
0.5 -0.001 0.891 1.184 0.837 2.016 0.572 2.359 0.278
0.6 -0.001 0.980 1.203 0.847 1.965 0.528 2.263 0.266
0.693 -0.000 0.956 1.174 0.811 1.871 0.482 2.079 0.227

25 0.8 -0.001 1.009 1.234 0.871 2.004 0.539 2.292 0.253
0.9 -0.001 1.052 1.290 0.964 2.223 0.784 2.818 0.658
1.0 -0.001 1.055 1.295 0.979 2.263 0.858 2.949 0.820
1.5 -0.001 1.327 1.384 1.186 2.394 1.070 3.167 1.114
1.7 -0.001 1.536 1.521 1.363 2.549 0.968 3.047 0.628
2.0 -0.001 1.738 1.653 1.600 2:845 1.248 3.492 0.884
3.0 -0.001 1.792 1.627 1.749 2.928 1.814 4.045 1.883

0.5 -0.000 0.869 1.218 0.805 2.046 0.557 2.385 0.277
31 0.693 -0.001 0.964 1.268 0.880 2.192 0.734 2.778 0.607

1.0 -0.001 1.018 1.323 0.951 2.300 0.823 2.969 0.787
1.5 -0.001 1.301 1.404 1.155 2.410 1.043 3.176 1.092

0.5 -0.000 0.753 1.201 0.797 2.132 0.541 2.465 0.254t'! 0.693 -0.000 0.866 1.256 0.873 2.267 0.693 2.840 0.543
1.0 -0.000 0.915 1.298 0.944 2.361 0.774 3.010 0.711
1.5 -0.000 1.232 1.399 1.141 2.473 1.004 3.227 1.044

:,ccoptance Rdrwe 0.30
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Table 5 .

Expected.Values and Standard Deviations
from TREE1P on Bimodal Item Pools

Varyibg Pool Size, Stepsize and Ability Level

Ability Level

Pool Size Stepsize 0 11 1 2 3

E(e) So E(o), So E(e) So E(e) So

0.5 -0.004 1.020 0.231 0.443 1.312 0.495 1.473 0.245
9 0.693 -0.004 1.095 0.951 0.968 1A01 0.666 1.903 0.383

1.0 -0.001 1.264 1.036 1.042 1.639 0.628 1.876 0.331
1.5 -0.001 1.442 1.216 1.326 2.187 1.252 3.027 1.291

0.5 -0.001 1.006 1.009 0.903 1.671 0.579 1.917 0.275
13 0.693 -0.001 1.104 1.001 0.945 1.647 0.630 1.932 0.358

1.0 -0.000 1.267 1.143 1.011 1.754 0.551 1.946 0.238
1.5 -0.000 1.436 1.274 1.276 2.217'1.181 3.029 1.252

0.25 -0.000 0.920 1.102 0.855 2.001 0.623 2,,.264 0.421
0.5 -0.001 0.870 1.152 0.867 2.024 0.594 2.373%0.278
0.6 .0.001 0.951'1.173 0.875 1.976 0.536 2.271 0.242
0.693 -0.001 0.964 1.207 0.933 2.174 0.768 2.774 0.612

25 0.8 -0.001 0.953 1.183 0.887 2.020 0.589 2.335 0.272
0.9 -0.002 1.025 1.260 0.994 2.246 0.780 2.833 0.631
1.0 -0.001 1.017 1.257 1.002 2.280 0.860 2.969 0.791
1.5 -0 001 1.294 1.350 1.192 2.396/fr064 3.176 1.091
1.7 0.002 1.491 1.483 1.362 2.543 .959 3.047 0.612
2.0 -0.000 1.717 1.609 1.592 2.831 1.235 3.485 0.871
3.0 -0.001 1.761 1.601 1.763 2.953 1.803 4.070 1.857

0.5 -0.000 0.796 1.145 0.816 2.060 0.621 2.476 0.406
31 0.693 -0.000 0.924 1.229 0.912 2.218 0.741 2.814 0.585

1.0 -0.000 0.957 1.262 0.956 2.298 0.832 3.004 0.758
1.5 -0.002 0.968 1.284 1.049 2.446 1.080 3.338 1.015

0.5 0.006 0.726 1.174 0.800 2.246 0.692 2.903 0.572
61 0.693 -0.000 0.857 1.245 0.876 2.281 0.688 2.852 0.525

1.0 0.033 0.867 1.221 0.897 2.356 0.820 3.107 0.714
1.5 0.185 1.128 1.249 1.003 2.497 1.050 3.407 0.949

into. Acceptance Range = 0.30
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Means and Standard Deviations
from SIM1P on a Bimodal and
Skewed Item Pool Varying

Number of Test Administrations

Number of Tests
Administered

Shape of Pool

Bimodal Skewed

S
o

3-(0 s
o9

25 2.207 0.627 2.193 0.622
50 2.242 0.634 2.225 0.627
75 2.262 0.645 2.216 0.603

Note. All runs made with 20 item Upper limit, stepsize
.693, and acceptance range = 0.30. The true

ability was set at 2.0. Both the pools had 61
items.

Table 7
Means and Standard Deviations
from SIA1P on ET1PL Item Pool

Varying Stepsize

.Jtepsize
Ability Level

-3 -2 -1 0 1 2 3

-.'ik' -2.886 -2.145 -0.992 -0.050 1.135 1.991 3.331
.1 S 0.715 0.728 0.486 0.534 0.502 0.627 0.788

:Ini* 13.04 15.88 19.24 20.00 20.00 19.84 18.40

X. -2.779 -2.230 -1.132 0.129 0.952 2.009 2.972
s 0.491 0.681 0.550 0.461 0.374 0.515 0.857
Mnl* 12.24 13.96 19.68 20.00 20.00 19.76 18.24

X -3.157 -2.139 -1.134 0.064 1.018 2.055 3.213
.3 S., 0.652 0.645 0.800 0.503 '0.363 0.516 0.844lni* 10.04 14.48 18.56 20.00 19.92 19.56 16.08

-3.168 -2.250 -1.052 0.001 1.070 1.987 2.910
.4 0.611 0.782 0.547 0.518 0.444 0.531 0.554Mrlk 9.56 17.04 19.24 20.00 20.00 19.48 18.12

-2.762 -2.096 -1.122 -0.070 1.136 2.076 3.053
0.539 0.619 0.700 0.539 0.562 0.548 0.718

MTH* 9.20 14.72 18.12 20.00 20.00 19.40 16.28

All runs wde with 25 administrations per ability level, 20 item upper
liL;it, and acceptance range = .25.

1 w,an number of items administered.

)
-VP a.,
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Table 7 (Cont.)
Means and Standard Deviations
from SIM1P on ET1PL Item Pool

Varying Stepsize

Mepsize
Ability Level

-3 -2 -1 1 2 3

3-C.k -3.061 -2.175 -1.026 -0.065 1.029 1.950 2-.913

S, 0.561 0.460 0.573 0.469 0.516 0.696 0.533
Mni* 7.80 13.12 18.92 20.00 20.00 19.16 15.92

5(0 -3.134 -2.271 -1.241 0.094 0.959 2.029 3.310

.9 So 0.499 0.790 0.898 0.419 0.380 0.531 0.799
Ini* 5.92 11.40 16.96 20.00 19.84 19.20 13.28

-3.739 -2.501 -1.389 0.101 1.035 2.437 3.239

1.5 Su 0.876 0.961 0.910 0.598 0.792 1.118 1.010
Mni* 5.32 10.80 18.04 20.00 19.32 16.16 12.72

-3.683 -2.972 -1.482 -0.329 1.100 2.032 3.631

2.0 S. 0.514 1.044 1.194 1.175 0.450 0.913 1.345
Mni* 4.24 8.76 16.56 18.56 19.96 18.48 13.36

-4.530 -2.942 -1.751 -0.042 1.230 2.511 4.471

3.0 S, 1.591 1.494 '.916, 0.465 1.117 1.556 1.519

Mni* 5.04 10.68 16.52 20.00 19.28 17.04 8.60

Note. All runs made with 25 administrations per ability level, 20 item upper
limit, and acceptance range = .25.

mean number of items administered

overall compromise value which achieves less bias while holding the stan-
dard error down. Figure 3 shows the E(e) and So for the 31 item rectangular,
normal and bimodal pools when 0 = 1.0 and the acceptance range equals
0.30 for varous stepsizes.

Table 7, which reports the results of the SIM1P on the ET1PL pool,
presents information that suggests a stepsize between 0.4 and 0.7 yields
less bias and a smaller standard error. It should be recalled that the
SIM1P is subject to sample variation, but in general, the results seem
to suggest that a stepsize of about 0.7 is appropriate. However, a trend
which snould be investigated further is that larger item pools seem to
do better with smaller stepsizes and conversely.

Acceptance Range

The results of the acceptance range study are given in Tables 8,
(), and 10. Table 8 presents the E() and 5, for stepsizes 0.5, 0.693,
1.0, and 1.5; acceptance ranges 0.1, 0.2, 0.3, and 0.4; and ability levels
n.0, 1.0, 2.0, and 3.0 from TREE1P analyses. All of the results in Table

4
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Figure 3
Relationship Between Stepsize

and the E(e) and S
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. .

8 are based on the 25 item rectangular pool. From Table 8 it can be seen
that in most cases, as the acceptance range increases, the standard devia-
tion decreases. This is a reasonable result since more items are available
for administration with a larger acceptance range. However, there is
also a trend of increased bias in estimate as the acceptance range increases,
particularly at the higher ability levels and for the larger stepsizes.

t-
TAl'iN9 shows the results of the SIM1P on the VC1PL pool using 25

test administrations per ability level; 20 item upper limit; stepsize
= .693; and = -3, -2, -1, 0, 1, 2, and 3. The mean number of items
is also indicated. These results indicate that an acceptance range of
0.30 is probably the best compromise value for minimizing bias and stan-
dard error of ability estimates across the range of 6. Table 10 shows
the results of the SIM1P on the ET1PL pool using 25 test administrations
per ability level4 40 item upper limit; stepsize = .693; and e = -3, -2,
-1, 0, 1, 2, and 3. Again, the mean number of items is indicated. These
results on ET1PL are somewhat more ambiguous although the extreme accep-
tance range values are clearly inferior to the more moderate values of

Table 8
Expected Values and Standard Deviations
from TREE1P on 25 Item Rectangular Pool

by Step Size and Acceptance Range

Ability Acceptance
Level Range

Stepsize

0.5 0.693 1.0 1.5

E(o) So E(o) So E(e) So E(e) So

.1 -0.00 0.92 -0.00 0.84 -0.00 1.04 -0.01 1.07

.2 -0.00 0.81 -0.02 1.01 -0.00 0.88 -0.00 1.06
0.0 .3 -0.00 0.74 -0.01 0.79 -0.00 0.83 -0.00 0.97

.4 -0.00 0.76 -0.01 0.78 -0.00 0.81 -0.00 0.93

.1 0.94 0.94 0.55 0.80 1.08 1.06 0.89 1.23

.? 0.89 0.87 1.00 1.04 1.00 0.94 0.90 1.22
1.0 .3 0.86 0.84 0.91 0.89 0.99 0.90 1.11 1.09

.4 0.94 0.81 0.96 0.83 1.00 0.89 1.10 1.07

1.1 1.89 0.97 0.97 0.66 2.09 1.03 1.99 1.45
.2 1.92 0.99 1.88 0.97 2.08 1.04 2.00 1.45

1.0 .3 1.93 1.00 1.98 0.98 2.10 1.04 2.32 1.22
.4 2.01 0.92 2.03 0.91 2.12 1.02 2.33 1.21

.1 2.76 0.88 1.21 0.46 2.93 0.93 3.09 1.39

.? 2.39 0.85 2.74 0.89 3.08 0.91 3.10 1.39
3.0 .3 2.96 0.81 2.92 0.76 3.14 0.87 3.39 1.04

.4 3.00 0.74 2.97 0.72 3.16 0.84 3.42 1.01
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Range

-3

os.

)-(-. -1.938
. 1 S. 0.430

lini* 3.64

x., -2.747
S. 0.790
1ni* 6.96

T -2.955
. 3 S 0.823

Mni* 7.00

x, -3.171
.4 S 0.690

Mni* 7.08

-3.157
.b S. 0.606

Mni* 8.16
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Table 9
leans and Standard Deviations
from SNIP on VC1PL Item Pool

Varying Acceptance Rangei
Ability Level

-2 -1 0 2 3

-1.713 -0.994 -0.491 1.101 1.873 2.913
0.794 0.573 0.810 0,976 0.676 0.447
5.56 6.84 8.52 11.12 9.72 6.24

-2.133 -1.193 -0.152 1.208 2.268 2.889
0.520 0.779 0.544 0.739 0.686 0.540
8.88 12.56 14.44 15.44 10.56 7.20

-2.085 -1.311 -0.021 1.025 2 229 3.109
0.555 0.943 0.385 0.578 0.581 0.510
10.00 11.24 16.96 17.24 12.96 7.68

-2.404 -1.346 -0.007 0.869 2.234 2.950
0.538 0.681 0.344 0.399 0.775 0.579
8.08 14.60 18.44 19.72 14.64 9.64

-2.242 -1.051 0.160 0.941 2.340 3.117
0.791 0.619 0.755 0.546 0,780 0.497

11.40 17.04 18.64 19.28 14.32 9.48

Note. All runs4made with 25 administrations per ability level, 20
item jpper limit, and stepsize .693.

*Mni mean number of items administered

.2 to .4. In cases such as this, one should consider a combination of
tne densiti of toe item pool across the range of 0 and whether a parti-
.:Jlar ranw s!iould be estimated more precisely than others, in order

on toe pest acceptance range value. Decisions regarding the
vdlje f.)r- program parameters cannot be wade independent of consider-

c' a', the size and slape of the item pool to be used.

2m.:ondar- Results_

condar) results include the comparison of the performance of actual
ideal item pools previously discussed. Table 11 shows this compari-

mnd overall, the ideal pool did not perform much better than the

4otner comparison v;as, or t,ie SIllP and TRLE1P programs on the same
tne -Irie prow-a!, parameter values. 3y c,oking at Table 2

ini Thole 6, on :lay see Lila the SIM1P did a rea';onably good job of
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Table 10'
Means and Standard Deviations
iron: SIM1P on ET1PL Item Pool

Varying Acceptance Range

al

Acceptanue
Range

Ability Level--
-3 -2 -1 0 1 2 3

-2.528 -2.200 -1.174 -0.111 0.974 2.001 3.299
.1 S. 0.559 0.667 0.700 0.569 0.903 0.471 0.781

4ni* 6.64 9.24 17.16 26.60 27.80 16.44 11.16

T, -2.989 -2.159 -1.144 -0.016 0.926 2.152 3.451
2 5 0.491 0.559 0.731 0.332 0.362 0.464 0.765

Mni* 7.20 14.52 22.40 31.60 33.60 22.36 13.40

K. -3.103 -2.475 -1.162 0.003 1.016 2.161 3.024
.3 S: 0.576 0.594 0.630 0.239 0.401 0.410 0.747

lhl* 7.60 12.40 27.96 36.72 37.88 25.32 18.16

T, -2.064 -2..359 -1.121 -C.094 1.043 2.073 3.054
J( 0.615 0.315 0.582 0.261 0.316 0.336 0.520
mini* 10.20 13.00 31.40 39.00 39.36 31.52 20.12

7-, -3.378 -2.465 -1.088 0.031 0.993 1.920 3.195

.5 3.. .716 0.715 0.510 0.394 0.356 0.389 0.584
-III* 10.24 18.48 35.08 39.80 39.48 35.12 20.75

.....
ote. t11 runs made with 25 administrations per ability level, 40

item upper limit, and stepsize = .693.
an nurdier of items administered

aarroxirating the TREE1P results at t-; = 2 for the bimodal and skewed pools.
Also, fror Table 6, it can be seen that.increasing the number-of tests
administered !).); the SIM1P did not dramatically change the means and stan-
lard deviations. Therefore, 25 administrations seemed adeqUate.

Finolly., by comparing cells of Tables 7 and 10, one can see that
Im_reasing the maximum nuwber of items administered from 20 to 40 does
hOt .,Jostantially change the ifieans and standard deviations from the Sr4lP.

,.0:varison is not exact because tne acceptance range of 0.25 usedtr dndlysel) in Table 7 does not precisely equal the value of 0.2 or 0.3
T.)r. icceptance range in Table 10. Neither is the stepsize of 0.7 in Table
eactly equdl to 0.693 used in Table 10. However, the values seemed

Lio,v enhugn to.mako 3 comparison, and the result of this comparison seemed
t. , Iniicate that 20 iteL.; as o.r, upper limit was adequate. Note that the
tdi nwiber of items recorded in both tables illustrated that the proce-
:,4rt, dpbroaL'Ied the upper limit in the middle range of
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LT1PL X

Tool

Ideal

Pool

. Table,11
Means and Standard Deviations from

SI1P on ET1PL Item Pool and Comparable
Ideal Item)ool

Ability Level
--

-3 -1 0 1 2 3

-1.061 -2.175 -1:026 -0;065 1.029 1.950 2.913
0.561 0.460 0.573 0.469 0.516 0.696 0.533

-3.036 -2.404 -1.037 4.017 1.148 2.222 3.070
*0.441 0.703 0.652 0.462 0.787 0.718 0.460

:note. All runs made with 25 administrations per ability level, 20
item upper limit, s.tepsize = 0.70, and acceptance range . 0.25.

Discussion

it should be recal,led that the basic emphasis of this study was to
investigate the operational characteristics of.a one-parameter tailored
testing procedure when Ahe item pool 'attributes (shape and size) and
the progral;: parameters (stepsize and a.cceptance range) were varied. In
so doing, suggestions regardinrj the most preferred item pool and program

rameter value; were found based upon analyses of the tailored testing
..lrocedure's aHlity 'estimate bias and standard error at various points
Along thea1.,i1ity continuum. This strategy for investigating bias and
standard ,?rror was motivated by the need to determine these values at
,,everal levels'of ! across the continuum, since overall efforts on the
projct were directed toward developing a criterion-referenced tailored
tost. In critorion referenced-testing, it is essential to identify effects

bias and standard erroron decisions made at several
)int% alny toe ability scalo. Tne resodrch presented here, which was

opt 11,11 i tor, :'0(11 f tri'11t.r'S and program parauletyr;
ti:.C.e(lry f )utP.!dt.lc!-i

, .. . ,o;1
. I t.,.r1fm-r(1111cenC0(1 tdi iOrod
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the continuum. In this regard, one should view the estimates of true
ability +3.0 as understandably limited, in as much as the item pools did
not have any items beyond difficulty +3.0. For best estimation of ability,
the pool should have a dense uniform distribution'of items around the
ability level to be estimated.

Item Pool size

The methods employed for the investigationoof the effects of item
pool size.on the operation of the one-parameter maximum likelihood tailored
testing procedure were simulations; but theoretical methods have also been
proposed. Lord (1970) suggested a formula for the number of items required
for a fixed stepsize procedure (selecting items more difficult by the
stepsize when correct responses were given and vice versa). The formula
is

N = (1 + R/d) (n - R/2d) (2)

where +R i the range of item difficulties desired, d is the stepsize
and a submultiple of R, and n is the maximum number of items to be admin-
istered. For example, if R were plus three to minus three, d were set
at 0.5, and n were twenty, the formula would give

119 = (1 + 3.010.5) (20 - 3.0/(2 X 0.5)). (3)

With this set of values, 119 items would be required if the exact item
requested were to be available.

This formula does not directly apply to some tailored testing proce-
dures which use a variable rather than a fixed stepsize. Also, most
testing procedures allow administration of slightly- discrepant items from
those requested by the procedure (the acceptance range specified how dis-
crepant). Procedures using a variable stepsize tend to require more items
hecause, as the procedures converge to an ability estimate, the stepsize
in effect oecomes smaller and smaller. Allowing items to be administered

ditfer slightly from the requested item compensates to an extent
t.c ti10 n.ret in number of items caused by the variable stepsize.3

.7,notner lii-itation of the formula is that several tailored testing procedures
acii:initer items until a specified precision is reached instead of using
3 preset maximum number of items as a stopping rule.

1010ther tneoretical method of estimating how large an item pool should
(cliff, 1975) is to determine the number of items required to reach

a ,,pecitied precision of ability e,,timation, given that equally spaced,
tly dp,crirlinatinq items are available. With these ideal or optimal

Lircurtance,,, the preLision of an ability estimate is equal to the difference
oetween adjacent items. For example, an item pool with seven equally
spaced items from -3.0 to +30 would classify examinees into categories
1.0 sLale unit apart. ihe number of item responses required to make the

Would he

loy?n

,2!)

(3)
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kwhero ts theSiZe of-the item pool, since 2 is'the number of branches
in the tree diagram after k items are administered. By specifying the
precision desired, e, the ninimum item pool size can be determined by
the range of ability, k, divided by e, plus one.

(4)

:he minn UI numper ot items administered to classify all ability revels
in the tailored testing situation is

k = + 1]. (5)

some results ontained by the application of the formulas based on
tne theoretical method tor estimating the number of items needed in a
pool, given tne pre'cision desired, have beqp indicated in Table 12. The
requirements for pool size were computed for the range of ability, -3.5
to +3.5, given the desired classification interval size. As has been
pointed out, these results are for a rectangula'r pool of hypothetical
items with perfect discrimination and zero guessing probabilities. With
tqese restrictions, the item pool sizes shown must be regarded as lower
limits. The :--ini!.um session length indicates the fewest number of items
that .iould have to be administered in order to classify an ability level
within the mobilities of the item pool. These also are based on hypo-
thetically perfect items and item pooh, and should be considered as lower
limits. The values in the column labelled simulated length are the number
of items required to reach a best estimate using the most likely response
pattern simulation. All results in this column are based on e 0.0.

Table 12
Minimum Item Pool Requirements

for d Rectangular Idealized Pool Given
Classification Interval and Ability Range

;11ty Clacsiticltion
Interval Size

Pool

Size
Minimum

Session Length
Simulated
Length*

15 3.9 2

4.9 4
.

.

,.
. .',, 0.1?') 55 5.8 8

-, -;., 0.0(i?5 113 6.8 8
3.: ) 0.0 11 ", ,") 7.8 7

....

Numhu, ol itow, iAlri!li-,tered to closest approximation of -

4itnin clay-.itication interval.

r.n Iii jl,jhi ses n length is less than the minimumtrd iondtt) tJw (holt.0 ot ah'ility level. Setting the
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stepsize equal to 0.693 tends to keep the process near the middle of the
item pool, speeding no convergence for abilities near 0.0. If an ability
of 3.0 had been used, the session length for classification interval .5
would have been 6, well over the minimum predicted values. Thus, the mini-
mum session length refers to the number of items needed across the ability
range, and under specified circumstances fewer items may be required.

.These results using simulated tests have been compared to actual
tailored testing convergence plots and found to be fairly good approxi-
mations (Reckase, 1976). One observation of importance is that, from
convergence plots, it can be seen that giving too many easy items causes
bias in ability estimation. Reckase (1975) has discussed this effect
in detail.

Stepsize

The investigation of the stepsize program parameter suggests that
for tailored testing procedures using a fixed stepsize prior to having
correct and incorrect responses in the examinee's response string, a value
in the range of .5 to 1.0 is most apt to minimize ability estimate bias
and standard error. To determine the precise stepsize value to use when
setting up a tailored testing procedure, one should look carefully at
the distribution of item difficulty of the particular item pool to be
used. The testing procedure should select the first item from the middle
of the pool. This item may not coincide with the most informative item
for = 0, since the median difficulty for the pool may not equal 0.
Tne next step is to tentatively set the stepsize equal to 0.7 and deter-
:lne whether if.ems exist within the acceptance range at +1, +2, +3, and
+4 stepsizes away from the median difficulty item that the proceaure
administered first. The purpose here is to avoid setting the stepsize
at a value which will induce ability estimates during initial testing
which will "fall through" the item pool (i.e. premature'termination of
testing when no items exist within plus or minus the acceptance range of
the ability estimate). If the item difficulty distribution is uniformly
dense across the range of difficulty this will not pose much of aTroblem.

Another consideration when setting the stepsize value is to make
it wall enough to assure that items exist within an acceptance range of
+4 stepsizes away from the medi&I difficulty item in the pool. This will
make the.v.iniNum number of items that would be administered equal to 5
for those who get all the items right or all the items wrong. Depending

the above considerations, the stepsize value may be set lower or higher
tnan tne recommended 0.7. As can be seen, the item pool size and diffi-
culty distribution, acceptance range, and stepsize interact in determining
the adequacy of the testing procedure.

The reason for including 0:..693 as a potentially optimal stepsize in
this study was that when the first Rasch procedure, using raw ability, was
set up at tne Hniversity of Missouri, a multiplicative stepsize equal to
was used with good results. When the procedure was changed to operate

.)r1 lor; ai)il)ty, an additive stepsize equal to 1 oge2 seemed promising.
tlis study suqqests that indeed 1 oge2 0.693 was justifiably chosen for
the stepsize in the one-parameter tailored testing procedure.
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Acrrptanrn

A., has been indicated in the discussion of stepsize, setting thevalue) ot the program parameters (stepsize and acceptance range) should;Ierformd in accord with the item pool attributes of the pool to beused for testing. If the item pool has a uniform densfity of item diffi-
culti,-,, one may set the acceptance range at a fairly loW value (say 0.2).However, if "gaps" exist along the difficulty continuum, the acceptance
range ',hould be set large enough to avoid terminating the test due to
.1 lack of any item within an acceptance range of the ability estimate.
In general, an acceptance range equal to 0.3 appeared to satisfy the con-ditions of avoiding premature termination of testing and also minimizing

induc.d by administering inappropriate items.

Ihe program parameter denoted acCeptance range is equivale to
,recitying a minimum item information cutoff. Table 13 indicates thecomparable item information cutoffs for the acceptance ranges investigatedfor this report. Many of the tailored testing systems presently in oper-at.ion compute the item information for each item in the pool given the.ore',ent ability estimate. For the one-parameter model, the informationtunction is maximized when the difficulty of he selected item equals

ability estimate. For a discussion of information functions see::1!r&dum (1968).

Table 13
Comparable Information Cutoffs
for Acceptance Range Values

Acce2tance Range Information Cutoff

.1 .249

.2 .248

.3 .244

.4 .240

.5 .235

-\planation for the larger standard deviation given by
,n on the rectangular pool at the more extreme values of the
mtinuum was 'Suggested by a close look at the development of

--,j!ly distribution by the TREE1P for the various shaped item

ot the 1RLL1P and the manner in which it developed the
WdS that the standard deviation actually increased

,,,trUlet, or level,, resulted from items administered to more and
ability estiirates. This increase of the standard deviation) aPl!ity ostimates stabilized for the smaller item pools as the paths

.)t the "tree" terminated. For the larger pools (especially:1 pools), the :tandard deviation initially increased but as

%),
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branches were terminated the standard deviation came down. Figure 4

illustrates this property of the TREE1P when it was run on the 61 item
rectangular pool with o set equal to zero, stepsize equal to 0.693, and
acceptance range equal to 0.30. This pattern of increasing standard
deviati.on of ability estimates during the early forMulation of the pro-
pensity distribution was evident-for all shapes of the distributions of
items in the pools.

However, the patterns of convergence to the final standard deviations
yielded by the TREE1P were different for the various shapes of item pools
at different ability levels. Tables 1, 2, and 3 show a general tendency
for the standard deviations of ability estimates of the true abilities
zero and one to be larger for the normal and bimodal pools than for the

rectangular pools. But for ability levelstwo and three, the standard
deviations of ability estimates were generally larger for the rectangular
pools than for the normal and bimodal pools. This trend was consistent

across most of the TREE1P analyses. The explanation proposed was that,
because more items were available for admi-nistration to the more extreme
levels of ability (i.e. 8 = 2 and e = 3) when the rectangular pool was
used, the standard deviation of ability estimates was larger since the
standard error was more accurately estimated. The standard deviations
of the estimates from the normal and bimodal pools for these true ability
levels were smaller, since paths or branches were often terminated because
no items were available within the acceptance range of the estimated abilities.

In short, when fewer items mere in the pool around a particular true ability,
there were fewer paths allowed to develop in the propensity distribution
due to the stopping rules. Therefore, the standard deviation of ability
estimates at that particular level was an underestimate. A logical check

for this phenomenon was the predictiot. that when the acceptance range
was made smaller, the drop in standard deviations for the more extreme
ability levels would be more pronounced with the normal pool than for tha
rectangular. This did appear to be the case. The point is that the smal)er
standard deviations for ability levels 2 and 3 yielded by the TREE1P when
normal or bTmodal pools were used probably should not be weighted too
heavily, as the tendency appears to be somewhat of an artifact of the
procedure. The values obtained for the rectangular pools may well be
more redlistic.

SIM1P

SIM1P wds designed to score and admini;ter items in the manner pre-
viously described based on the rationale that this approach was a reasonable
simulation of the behavior of an examinee when interacting with a tailored
test. The pseudo examinee with some specified true ability was presented
an item of aerage difficulty from the pool, because, given we have no
prior information about his ability, the best guess of an item appropriate
for the examinee was one of average difficulty. Scoring of each item

by determining the probability of a correct response using the examinee's

in the one-parameter formula and then comparing this probability to a
random number selected from a rectangular distribution between zero and
one was deemed a reasonable simulation, assuming the one-parameter model

was correct. Clearly, the larger the probability of a correct response
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\ Figure 4
TRU1P tbnv-6..0-66 to the:
Standard Deviation of Theta
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lilvels of lirdnching
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. was, the greater the chance was that the random number generated was

less than or equal to the probability specified by the model of a correct

response. However, there was ample provision for the reality that occasJon-

ally an examinee with adequatd ability to answer an item correctly will

still respond,incorrectly and conversely. While the probability of a

correct response was computed using the examinee's true 6, item selection

procedures tised the fixed stepsize until correct and incorrect responses

were present, and then selected items maximizing information for the

estimated ability. This approach constituted the simulation of the inter-

action between examinee and tailored test with respect to the SIM1P.

Summary and Conclusions

It should be kept in mind that tilis report focused primarily on

program parameters and item pool attributes as they interacted with the

one-parameter maximum likelihood tailored testing procedure currently in

operation for this research project. Clearly, the inferences drawn from

the results should generalize to other tailored testing applications using

similar conceptual formulations of operation. In this sense, the results

of this'study were intended not as isolated studies of item'pool size and

shape, stepsize magnitude, and value of the acceptance range, but rather

intended to generalize to fairly concrete statements about the preferred

operation of a one-parameter tailored testing procedure. As was expected,

item pool attributes and program parameters interacted to a great extent

in the determination of the degree of bias and amount of variance in

ability estimation. The intention in drawing up the numerous tables and

figures of this report was to illustrate trends of interaction among these

variables. These trends, in large part, were the primary thrust of this

report. They should be helpful in applying tailored testing proceduees

in which some of the variables, such as item pool attributes, have been

fixed by practicality. An important consideration when using actual item

pools is that calibration of actual items provides estimates of item

parameters. Often these parameters have been obtained from a linking

performed on several separate analyses in order to get larger samples and

therefore more stable estimates of the difficulty values. (For a discussion

of linking techniques see Reckase, 1979.) When implementing tailored

testing, it must be assumed that the estimates of item difficulties contain

minimal error. If this assumption is not met, obviously error will

be introduced into the ability estimates based on these estimates of item

parameters. At least two major concerns influence the error in parameter

estimates, sample size and factorial complexity of the test. For the

vast majority of analyses in this report the item parameters have '..)een

assumed to be known.

In conclusion, this paper was intended as a guide for those r_etting

up a tailored testing procedure. The paper does not, by any means, exhaust

all the inferences that could be drawn from this set of data. The numerous

tables have been included with the intention that they might serve as

aides in guiding the development of one-parameter tailored testing systems.

,
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Appendix A

Figure A-1
Frequency Distribution
of Difficulty Values:
72 Item VC1PL Pool
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Figure A-2
Frequency Distribution
of Difficulty Values:
1S0 Itep: ET1PL PQ01
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